Symmetrical Weighted Subspace Holistic Approach for Expression Recognition

نویسندگان

  • M. Seetha
  • Nagaratna Hegde
چکیده

Human face expression is one of the cognitive activity or attribute to deliver the opinions to others. This paper mainly delivers the performance of appearance based holistic approach subspace methods based on Principal Component Analysis (PCA). In this work texture features are extracted from face images using Gabor filter. It was observed that extracted texture feature vector space has higher dimensional and has more number of redundant contents. Hence training, testing and classification time becomes more. The expression recognition accuracy rate is also reduced. To overcome this problem Symmetrical Weighted 2DPCA (SW2DPCA) subspace method is introduced. Extracted feature vector space is projected in to subspace by using SW2DPCA method. By implementing weighted principles on odd and even symmetrical decomposition space of training samples sets proposed method have been formed. Conventional PCA and 2DPCA method yields less recognition rate due to larger variations in expressions and light due to more number of feature space redundant variants. Proposed SW2DPCA method optimizes this problem by reducing redundant contents and discarding unequal variants. In this work a well known JAFFE databases is used for experiments and tested with proposed SW2DPCA algorithm. From the experimental results it was found that facial recognition accuracy rate of GF+SW2DPCA based feature fusion subspace method has been increased to 95.24% compared to 2DPCA method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of Expressions Based on Kernel Global and Local Symmetrical Weighted Fisher Discriminant Nonlinear Subspace Approach

Preservation of global and local features of images during dimensional reduction is a challenging task. The main goal of this work is to resolve the problem of singularity matrix by preserving local and global discriminative features by introducing symmetrical weights on principal components. To meet this goal Combinational Entire Gabor Kernel Global and Locality Preserving Symmetrical Weighted...

متن کامل

Subspace Linear Discriminant Analysis for Face Recognition

In this paper we describe a holistic face recognition method based on subspace Linear Dis-criminant Analysis (LDA). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via Principal Component Analysis where the subspace dimension is carefully chosen, and then we use LDA to obtain a linear classiier in the subspace. The criterion we u...

متن کامل

A Novel Null Space-Based Kernel Discriminant Analysis for Face Recognition

The symmetrical decomposition is a powerful method to extract features for image recognition. It reveals the significant discriminative information from the mirror image of symmetrical objects. In this paper, a novel null space kernel discriminant method based on the symmetrical method with a weighted fusion strategy is proposed for face recognition. It can effectively enhance the recognition p...

متن کامل

Automatic Facial Expression Recognition Using Linear and Nonlinear Holistic Spatial Analysis

This paper is engaged in the holistic spatial analysis on facial expression images. We present a systematic comparison of machine learning methods applied to the problem of automatic facial expression recognition, including supervised and unsupervised subspace analysis, SVM classifier and their nonlinear versions. Image-based holistic spatial analysis is more adaptive to recognition task in tha...

متن کامل

بازشناسی جلوه‌های هیجانی با استفاده از تحلیل تفکیک پذیری مبتنی بر خوشه بندی چهره

Improvement of Facial expression recognition is aim of proposed method. This is a new formulation to the linear discriminant analysis. In the new formulation within-class and between-class covariance matrix are estimated on the each cluster and in the test phase new samples are mapped to the subspace that is related to the cluster of them. At the first we addressed clustering analysis of faces ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015